Dual Balanced O/E Converter

NEP (* 1) < 6 pW / √Hz at 100MHz, 1310nm

DC to 1GHz Low Noise

- DC to 1GHz
- \bigcirc Low Noise: NEP*1)<6pW/ \sqrt{Hz} at 100MHz, 1310nm
- Best for Medical OCT
- Equipped with 2-input Differential Amplification

★1) NEP: Noise Equivalent Power Input

● Feature of DLP-2

1) The wide bandwidth from DC to 1GHz and super stable output voltage amplitude

These characteristics have been realized by the innovation of the wide bandwidth amplifier based upon Gravitons exceptional I/V conversion technology.

All discrete components are used from the first stage I/V amplifier to the cable driver.

2 Symmetric characteristic of voltage amplitude

This characteristic has been achieved by cumulative simulation, appropriate device selections and experienced board design.

3 Best for medical OCT

DLP-2 allows you to capture clear images with less noise without sacrifying the resolution by wide range linearity over entire amplitude.

4 Compact and Lightweight

Body size: 60mm x 60mm x 22mm (Length including connectors: 80mm)

Weight: 0.15 kg

- Two connectors, Positive and Negative, are mounted on the case with the angle of 120 degree.
- InGaAs PDs are inserted inside of the FC connectors.
- This structure allows the positions of the lead wires from two PDs to fix.

Contact us for :

- Inquiry for application of ultraviolet, visible, and IR light. Note this DLP-2 is for 1310nm.
- Please specify the conditions for your application.

· · · Sales Performance

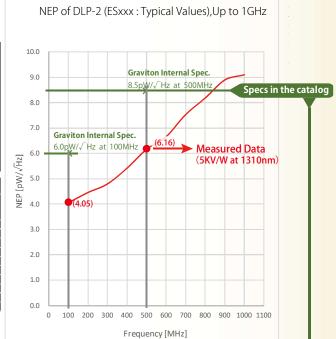
More than 600 units of Graviton's dual balanced O/E converters have been sold since the first model*2) was released to the market in 2014. Most of them have been exported to the north America, primary users are OCT makers and world research institutes. DLP-2 has been developed upon the requests from the market which requires more higher resolution of OCT.

*2) The first model has two types: DLP-1 for local needs and the BPD-1 for world market.

Dual Balanced O/E Converter

For medical OCT

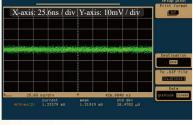
Model Type: DLP-2 (DC to 1GHz Version, Narrow Key)


Noise Density of DLP-2 (Esxxx: Typical Values)

(Spectrum Analyzer: R3465, RBW=5MHz, VBW=5MHz)

Spectrum Analyzer (R3465) Noise Floor					
Frequency [MHz]	Ex-Amp Gain [dB]	Measured [dBm/Hz]	NEP (5KV/W) [pW/√Hz]		
100	0.000	-148.0	3 1.78		
200	0.000	-148.0	1.78		
300	0.000	-147.7	1.84		
400	0.000	-147.2	1.95		
500	0.000	-147.2	1.95		
600	0.000	-147.4	1.91		
700	0.000	-147.5	1.89		
800	0.000	-147.1	1.97		
900	0.000	-146.9	2.02		
1000	0.000	-146.6	2.09		

DLP-2 RF Out (Gain = x1, 5,000V/W at 1310nm)				
Frequency [MHz]	Ex-Amp Gain [dB]	Measured [dBm/Hz]	Measured NEP [pW/√Hz]	True NEP [pW/√Hz]
100	0.000	-140.1	(2)4.42	4.05 (1)
200	0.000	-139.4	4.79	4.45
300	0.000	-138.8	5.13	4.79
400	0.000	-137.8	5.76	5.42
500	0.000	-136.8	6.46	6.16
600	0.000	-136.2	6.93	6.66
700	0.000	-135.2	7.77	7.54
800	0.000	-134.5	8.42	8.19
900	0.000	-133.8	9.13	8.90
1000	0.000	-133.6	9.34	9.11


 $1 = \sqrt{2^2 - 3^2}$

Frequency Response

X-axis: 200MHz / div Y-axis: 5dBelectrical / div Center Frequency: 1GHz Calculated from the impulse response shown abo

Noise Waveform of RF Output

DC Performance & Noise Level (with SMF-APC)

Item	Specifications	Measured Value	Judgment
Conversion Gain of RF Out	4.500 to 5.500 V/mW	5.002 V/mW	OK
(Pos. In, 1310nm, 50ohm Load)	4.500 to 5.500 V/IIIW	5.002 V/III W	
Conversion Gain of RF Out	4 500 to 5 500 V/W	-5.041 V/mW	OK
(Neg. In, 1310nm, 50ohm Load)	-4.500 to -5.500 V/mW	-5.041 V/mW	
Gain Difference (P-N) / (P+N)	Within +/- 2%	0.38 %	OK
Monitor Gain of P-Mon. Out	9.00 to 11.00 V/mW	10 10 X// XX/	OK
(Pos. In, 1310nm, Hi-Z Load)	9.00 to 11.00 V/mW	10.42 V/mW	
Monitor Gain of N-Mon. Out	9.00 to 11.00 V/mW	10.54 V/mW	OK
(Neg. In, 1310nm, Hi-Z Load)	9.00 to 11.00 v/mw	10.54 V/III W	
NEP (at 100MHz, 1310nm)	<6.0pW/√Hz	4.77pW/√Hz	OK
NEP (at 500MHz, 1310nm)	<8.5pW/√ Hz	6.92pW/√Hz	OK
Wideband Noise of RF Out	<1.5mVrms (50ohm)	1.32 mVrms	OK
Wideband Noise of P-Mon. Out	<0.3mVrms (50ohm)	0.24 mVrms	OK
Wideband Noise of N-Mon. Out	<0.3mVrms (50ohm)	0.25 mVrms	OK
Output Offset Voltage (RF Out)	+/-0.1mV (50 ohm)	0.00 mV	OK
Output Offset (P-Mon. Out)	+/-0.1mV (Hi-Z)	0.00 mV	OK
Output Offset (N-Mon. Out)	+/-0.1mV (Hi-Z)	0.00 mV	OK
Supply Current (+24V)	0.11 to 0.13 A	0.12 A	OK

Descriptions		Specifications	Damanka
		Graviton DLP-2	Remarks
	Detector Type	InGaAs PIN	
	Optical Inputs	FC/APC (Free Air)	Collecting the light emitted from a Ferrule terminal with a ball lens
	Coupling Loss	N/A	
	Operating Wavelength	1310nm	
	Wavelength Range	950 to 1650nm	
	Responsivity, Typ.	0.97A/W at 1310nm	0.67A/W at 1060 nm (including FC connector)
	Active Detector Diameter	0.045mm	
	Optical Back Reflection	N/A	-50dB (Actual Value)
	Photo Diode Damage Threshold	2mW	Depending on the specifications of the Photodiode
	RF OUTPUT Bandwidth (3dB)	DC to 1.0GHz	
	Common Mode Rejection Ratio	>25dB (typ. >30dB)	
	RF OUTPUT Transimpedance Gain (50Ω Load)	5.155V/A	Feedback resistance value of an initial stage TIA is 1.888 Ω: Inverse conversion value from conversion ga
	RF OUTPUT Conversion Gain (50 Ω Load)	5,000V/W at 1310nm	The conversion value at 1060nm is 3,450V/W.
	RF OUTPUT Power at 1dB compression (50 Ω Load)	typ. +10dBm	The voltage swing rage against 50Ω load is $\pm 1V$.
	RF OUTPUT Coupling	DC Coupling	
	RF OUTPUT Impedance	50Ω	
	Minimum NEP (30kHz to 100MHz)	<6.0pW/√Hz at 1310nm	Estimated NEP value at 1550nm <5.4pW/√Hz
	Overall Output Voltage Noise	<1.5mVrms (50 Ω)	
	DC Offset	<±0.1mV (50 Ω)	
MONITOR OUT	MONITOR Output Impedance	50Ω	
	MONITOR Output Bandwidth (3dB)	DC to 100kHz	
	MOTITOR Output Conversion Gain (Hi-Z Load)	10V/mW at 1310nm	The conversion value at 1060nm is 6.9V/mW
	MONITOR Output Voltage Swing (Hi-Z Load)	max. 10V	
	Overall Output Voltage Noise	<0.3mVrms	
	DC Offset	$\langle \pm 0.1 \text{mV} (50 \Omega)$	
General	Electrical Outputs	SMA Jack	
	DC Power Supply	±12V or +24V (Floating), 130mA	As GND voltage in the device is produced by the internal circuit, GND loop is hardly produced outside of the devi
	Operating Temperature Range (Non-Condensing)	0 to 40°C	
	Storage Temperature Range	-40 to 70°C	
	Dimensions (W x H x D)	60mm x 60mm x 22mm	80mm in length including a connector
	Weight	0.15Kg	

Note: The above specifications are subjected to change without prior notice for product improvement.

